资源类型

期刊论文 153

会议视频 2

年份

2023 17

2022 28

2021 19

2020 9

2019 15

2018 11

2017 14

2016 5

2015 4

2014 6

2013 2

2012 7

2011 4

2009 6

2008 3

2007 1

展开 ︾

关键词

生物降解 3

微生物代谢 2

微生物安全 2

生物表面活性剂 2

2-羟基丁酸 1

CO2利用 1

SWOT 分析 1

产业化应用 1

产业类型 1

产乙酸菌 1

产能 1

亲/疏水界面修饰 1

人工湿地 1

代谢作用 1

免疫调节 1

农业微生物;产业发展;微生物肥料;饲用微生物;微生物农药;酶制剂微生物;微生物种业 1

农场 1

功能代谢组学 1

厌氧 1

展开 ︾

检索范围:

排序: 展示方式:

Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1476-5

摘要:

• MES was constructed for simultaneous ammonia removal and acetate production.

关键词: Biocathode     Carbon dioxide     Electrochemical oxidation     Graphite anode     Boron-doped diamond    

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbialelectrosynthesis

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1761-1771 doi: 10.1007/s11705-022-2195-6

摘要: Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

关键词: microbial electrosynthesis     hydrogen evolution reaction     metalloporphyrins     biocompatibility     CO2 conversion    

微生物电合成中链脂肪酸 Article

褚娜, 郝雯, 吴清莲, 梁勤军, 蒋永, 梁鹏, 任智勇, 曾建雄

《工程(英文)》 2022年 第16卷 第9期   页码 141-153 doi: 10.1016/j.eng.2021.03.025

摘要:

微生物电合成(MES)使用微生物催化剂和电化学手段促进CO2生物转化,也应用于有机废物生物炼制。本文总结了MES 利用CO2 和有机废物产中链脂肪酸(MCFA)的研究现状与发展趋势,对传统发酵产MCFA的基本原理和研究进展进行了归纳。首先,概述了MES产MCFA的相关报道,重点介绍了多电子供体(ED)策略。其次,讨论了MES利用CO2产MCFA面临的挑战,并针对产甲烷抑制、产乙酸菌三磷酸腺苷(ATP)限制、产有机溶剂阶段提供ED有限进行了详细阐述。再次,分析了电化学手段促进有机废物生物炼制产MCFA的潜力。最后,从多级反应、底物供应、产物提取、微生物代谢路径等角度展望了未来发展方向。

关键词: 电发酵     微生物电化学     产乙酸菌     碳链延长     电活性微生物    

流动电极微生物电合成提高产物生成速率及降低能量消耗 Article

褚娜, 王东麟, 王厚锋, 梁勤军, 常佳丽, 高瑜, 蒋永, 曾建雄

《工程(英文)》 2023年 第25卷 第6期   页码 157-167 doi: 10.1016/j.eng.2021.09.015

摘要:

微生物电合成(microbial electrosynthesis, MES)利用可再生电力驱动微生物固定CO2合成化学品,在推进碳循环经济中具有一定潜力,受到广泛关注。

关键词: CO2利用     生物阴极     宏转录组     微生物电化学技术     胞外电子传递    

电化学微反应技术的工程研究进展——一种新型有机化合物电合成方法 Review

郑思源, 闫俊妤, 王凯

《工程(英文)》 2021年 第7卷 第1期   页码 22-32 doi: 10.1016/j.eng.2020.06.025

摘要:

电化学方法环境友好,在有机化学合成中具有独特的优势。然而,传统的电化学反应器存在复杂的传递问题,限制了电化学方法的应用。近年来,微反应技术在电合成研究中的应用缩短了离子的传递距离并增加了电极的比表面积,从而促成了高效、连续且易于规模化的电合成技术。本文从过程强化的角度讨论了在电合成中使用微通道的工程优势,分析了最近报道的电化学微反应器中的流型和传质行为,并列举了反应器放大的典型例子。作为一个相对较新的研究领域,在微反应器中进行电合成的许多科学规则和工程特征都有待研究。因此本文提出了潜在的研究重点,认为其对新型电合成技术的发展至关重要。

关键词: 电化学     电合成     微反应器     流动化学    

Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation

Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 208-219 doi: 10.1007/s11705-020-1945-6

摘要: Utilizing CO in an electro-chemical process and synthesizing value-added chemicals are amongst the few viable and scalable pathways in carbon capture and utilization technologies. CO electro-reduction is also counted as one of the main options entailing less fossil fuel consumption and as a future electrical energy storage strategy. The current study aims at developing a new electrochemical platform to produce low-carbon e-biofuel through multifunctional electrosynthesis and integrated co-valorisation of biomass feedstocks with captured CO . In this approach, CO is reduced at the cathode to produce drop-in fuels (e.g., methanol) while value-added chemicals (e.g., selective oxidation of alcohols, aldehydes, carboxylic acids and amines/amides) are produced at the anode. In this work, a numerical model of a continuous-flow design considering various anodic and cathodic reactions was built to determine the most techno-economically feasible configurations from the aspects of energy efficiency, environment impact and economical values. The reactor design was then optimized via parametric analysis.

关键词: electrosynthesis     e-biofuels     CO2 utilization     computational model    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Scale up of reactors for carbon dioxide reduction

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 116-122 doi: 10.1007/s11705-022-2178-7

摘要: In recent times there has been a great deal of interest in the conversion of carbon dioxide into more useful chemical compounds. On the other hand, the translation of these developments in electrochemical reduction of carbon dioxide from the laboratory bench to practical scale remains an underexplored topic. Here we examine some of the major challenges, demonstrating some promising strategies towards such scale-up, including increased electrode area and stacking of electrode pairs in different configurations. We observed that increasing the electrode area from 1 to 10 cm2 led to only a 4% drop in current density, with similarly small penalties realised when stacking sub-cells together.

关键词: CO2 reduction     electrochemical cell     electrosynthesis     upscaling    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1342-x

摘要:

• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD.

关键词: Pig manure     Antibiotics     Anaerobic digestion     Resistance genes     Microbial community    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 82-97 doi: 10.1007/s11783-011-0306-6

摘要: Microbes are vital to the earth because of their enormous numbers and instinct function maintaining the natural balance. Since the microbiology was applied in environmental science and engineering more than a century ago, researchers desire for more and more information concerning the microbial spatio-temporal variations in almost every fields from contaminated soil to wastewater treatment plant (WWTP). For the past 30 years, molecular biologic techniques explored for environmental microbial community (EMC) have spanned a broad range of approaches to facilitate the researches with the assistance of computer science: faster, more accurate and more sensitive. In this feature article, we outlined several current and emerging molecular biologic techniques applied in detection of EMC, and presented and assessed in detail the application of three promising tools.

关键词: molecular biological technique     microbial community     denaturing gradient gel electrophoresis (DGGE)     terminal restriction fragment length polymorphism (T-RFLP)     environmental applications    

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 317-323 doi: 10.1007/s11783-013-0596-y

摘要: Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl , KCl, and CaCl with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca >Mg >Na >K . Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na were one-fifth to five times of Mg , ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

关键词: divalent ion     electrodialysis     ion characteristic     microbial desalination cell     monovalent ion    

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1548-1

摘要:

• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli.

关键词: Nano-toxicity     Nano-plastics     Quantum dots     Microbial metabolite     Metabolic dysregulation    

标题 作者 时间 类型 操作

Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems

期刊论文

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbialelectrosynthesis

期刊论文

微生物电合成中链脂肪酸

褚娜, 郝雯, 吴清莲, 梁勤军, 蒋永, 梁鹏, 任智勇, 曾建雄

期刊论文

流动电极微生物电合成提高产物生成速率及降低能量消耗

褚娜, 王东麟, 王厚锋, 梁勤军, 常佳丽, 高瑜, 蒋永, 曾建雄

期刊论文

电化学微反应技术的工程研究进展——一种新型有机化合物电合成方法

郑思源, 闫俊妤, 王凯

期刊论文

Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation

Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Scale up of reactors for carbon dioxide reduction

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

期刊论文

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

期刊论文

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic

期刊论文